Clinical and Pre-clinical Publications		
Study Area Burn wounds Design Prospective, randomized, controlled study	 Study Finds Vomaris[™] Bioelectric Technology Significantly Decreased Biofilm in Burn Patients Chan RK, Nuutila K, et al.; Adv Wound Care (New Rochelle). 2023 Apr 11. doi: 10.1089/ wound.2023.0007. Epub ahead of print. Early, short-term treatment with WED significantly decreased biofilm severity in all burn wounds. Incidence of opportunistic pathogens such as Ralstonia pickettii and Serratia marcescens was significantly lower in WED-treated wounds compared to SoC. WED may result in a therapy that is superior to silver alone. 	
Study Area Wound biofilm infection Design Pre-clinical porcine mechanistic study	 Electric Field Based Dressing Disrupts Mixed-Species Bacterial Biofilm Infection and Restores Functional Wound Healing Barki KG, Das A, Dixith S, et al.; Ann Surg, 2017. Tested ability of wireless electroceutical device (WED) to manage bacterial biofilm infection in vivo in porcine chronic wound biofilm infection model inoculated with Pseudomonas aeruginosa and Acinetobacter baumannii. WED disrupted existing biofilm infection and prevented biofilm from forming. WED repressed genes responsible for quorum sensing, disrupting bacteria's ability to communicate and form biofilm. 	
Study Area Diabetic wounds Design Prospective case series	 Human Acellular Dermal Matrix Paired with Silver-Zinc Coupled Electroceutical Dressing Results in Rapid Healing of Complicated Diabetic Wounds of Mixed Etiology: A Novel Case Series Cole W; Wounds. 2016;28(7):241-247. Electroceutical wound dressing used in combination with human acellular dermal matrix in three complex cases (conventional care was unable to close wounds in up to two years). All three cases healed fully within six weeks with this alternative treatment. 	
Study Area WED in conjunction with NPWT Design Randomized controlled clinical trial	 A Wireless Electroceutical Dressing Lowers Cost of Negative Pressure Wound Therapy Ghatak PD, Schlanger R, Ganesh K, et al.; Adv Wound Care. 2015;4(5):302-311. Thirty (30) chronic wound patients undergoing negative pressure wound therapy (NPWT) were randomized into two arms (control = NPWT standard of care with thrice weekly dressing changes and test = wireless electrical device [WED] + NPWT with twice weekly dressing changes). WED + NPWT effectively decreased required dressing change frequency from thrice to twice weekly without any negative impact on wound healing. Cost of care with use of WED + NPWT was significantly lower than NPWT alone (p<0.05). 	
Study Area Acute and chronic wounds Design Retrospective dual center review of wound healing outcomes	 Demonstration of a Microcurrent-Generating Wound Care Device for Wound Healing within a Rehabilitation Center Patient Population Whitcomb E, Monroe N, Hope-Higman J, et al.; <i>J Am Coll Clin Wound Spec.</i> 2013;4:32-39. Evaluated differences in wound healing outcomes when treated with microcurrent-generating wound care device (MCD, n=18) vs. standard of care (SOC, n=20). Study population of rehabilitation and long-term care patients with acute and chronic wounds of varied etiology. MCD group wounds healed significantly faster (19.78 days) than SOC group (36.25 days) (p=0.036) 83.3% of MCD group wounds healed monotonically vs. 50% of SOC group (p=0.018). 	
Study Area Skin graft harvest sites Design Prospective single center clinical study	 The Use of Bioelectric Dressings in Skin Graft Harvest Sites: A Prospective Case Series Blount AL, Foster S, Rapp DA, et al.; J Burn Care Res. 2012;33(3):354-357. Compared acute wound healing after skin grafting (n=13). Half of each graft donor site was covered with a standard dressing (control) and half with a bioelectric dressing (test); both were covered with a semi-occlusive dressing. One week post-op: significantly greater epithelialization with bioelectric dressing (71.8%) vs. control (46.9%) (p=0.015). Blinded evaluator rated bioelectric dressing side visually superior in 92.3% of wounds. 	

Scientific Publications		
Study Area Anti-fungal properties Design In vitro	 Ketoconazole Resistant Candida albicans is Sensitive to a Wireless Electroceutical Wound Care Dressing Khona D, Roy S, Ghatak S, et al.; Bioelectrochemistry. 2021 Aug 4; 142:107921. Tested whether wireless electroceutical dressing (WED, Procellera™) is effective against ketoconazole-resistant yeast Candida albicans. In vitro model used to test WED, ketoconazole, and the combination of WED + ketoconazole against ketoconazole-resistant C. albicans. WED significantly affected several critical pathways necessary for C. albicans viability. In contrast, silver alone was ineffective. Wireless electroceutical dressing (WED) inhibited Candida albicans biofilm formation. 	
Study Area Anti-biofilm properties Design In vitro	 Silver-Zinc Redox-Coupled Electroceutical Wound Dressing Disrupts Bacterial Biofilm Banerjee J, Ghatak PD, Roy S, et al.; <i>PLoS One</i>. 2015 Mar 24;10(3):e0119531. Tested wireless electroceutical device's (WED) ability to inhibit <i>Pseudomonas aeruginosa</i> biofilm. WED impaired biofilm formation and significantly impaired extracellular polymeric substance formation compared to two different controls (placebo dressing and silver dressing) (p<0.05). WED impaired biofilm structures and caused significant cell death compared to controls (p<0.05). Silver alone was unable to disrupt <i>Pseudomonas aeruginosa</i> biofilm. 	
Study Area Anti-biofilm properties Design In vitro	 Antibiofilm Efficacy Evaluation of a Bioelectric Dressing in Mono- and Multi-Species Biofilms Kim H, Izadjoo MJ; J Wound Care. 2015 Feb 24;Suppl2:S10-14. Tested a bioelectric dressing's effectiveness against 10 clinical wound pathogens in monospecies and multispecies biofilm settings. Bioelectric dressing was effective against monospecies and multispecies biofilm forming bacteria; demonstrated 100- to 1000-fold reductions in bacterial numbers compared to three controls. 	
Study Area Re-epithelialization Design In vitro	 Improvement of Human Keratinocyte Migration by a Redox Active Bioelectric Dressing Banerjee J, Ghatak PD, Roy S, et al.; <i>PLoS ONE</i>. 2014 Mar 3;9(3):e89239. Human keratinocytes exposed to bioelectric dressing (BED) demonstrated significantly accelerated cell migration. This effect was not observed with three controls (placebo, silver alone, zinc alone). Cells exposed to BED's electric fields demonstrated increased signaling and production of H2O2 (required for cell migration). 	
Study Area Anti-bacterial properties Design In vitro	 Antibacterial Efficacy Testing of a Bioelectric Wound Dressing Against Clinical Wound Pathogens Kim H, Makin I, Skiba J, et al.; Open Microbiol J. 2014 Feb 21;8:15-21. Examined <i>in vitro</i> antibacterial efficacy of bioelectric dressing against 13 wound pathogens. The bioelectric dressing demonstrated bactericidal activity against antibiotic-sensitive multidrug-resistant strains and multiple antibiotic-resistant strains of wound pathogens; bacteriostatic activity against <i>Enterococcus</i> species. 	

Vomaris Wound Care, Inc. 1911 East Fifth Street | Tempe, AZ 85288 USA +1 (480) 921-4948 | (866) 496-8743

