Search
Close this search box.
Search
Close this search box.

References

  1. Nuccitelli, R. (2003). A Role for Endogenous Electric Fields in Wound Healing. Current Topics in Developmental Biology, 58, 1-26.
  2. Banerjee, J., Ghatak, P. D., Roy, S., Khanna, S., Hemann, C., Deng, B., . . . Sen, C. K. (2015, March 24). Silver-Zinc Redox-Coupled Electroceutical Wound Dressing Disrupts Bacterial Biofilm. PLOS ONE, 1-15. doi:10.1371/journal.pone.0119531
  3. Data on file, report #SLM090512CMC01F
  4. Kim, H., Makin, I., Skiba, J., Ho, A., Housler, G., Stojadinovic, A., & Izadjoo, M. (2014, February 3). Antibacterial Efficacy Testing of a Bioelectric Wound Dressing Against Clinical Wound Pathogens. The Open Microbiology Journal, 8, 15-21. doi:10.2174/1874285801408010015
  5. Kim, H., & Izadjoo, M. J. (2015, February). Antibiofilm Efficacy Evaluation of a Bioelectric Dressing in Mono- and Multi-Species Biofilms. Journal of Wound Care, 24(2), S10-S16. doi:10.12968/jowc.2015.24.Sup2.S10
  6. Banerjee, J., Ghatak, P. D., Roy, S., Khanna, S., Sequin, E. K., Bellman, K., . . . Sen, C. K. (2014). Improvement of Human Keratinocyte Migration by a Redox Active Bioelectric Dressing. PLOS ONE, 9(3), 1-14. doi: 10.1371/journal.pone.0089239
  7. Park, S. S., Kim, H., Makin, I. S., Skiba, J. B., & Izadjoo, M. J. (2014, January). Measurement of a Microelectric Potentials in a Bioelectrically-Active Wound Care Device in the Presence of Bacteria. Journal of Wound Care, 24(1), 23-33. doi: 10.12968/jowc.2015.24.1.23
  8. Foulds, I. S., & Barker, A. T. (1983). Human Skin Battery Potentials and Their Possible Role in Wound Healing. British Journal of Dermatology, 109(5), 515-522. doi:10.1111/j.1365-2133.1983.tb07673.x
  9. Borgens, R. B., Robinson, K. R., Vanable, J. W., & McGinnis, M. E. (Eds.). (1990). Integumentary Potentials and Wound Healing. Experimental Physiology, 75(2), 171-224. doi:10.1113/expphysiol.1998.sp004170
  10. Zhao, M. (2009). Electrical Fields in Wound Healing-An Overriding Signal that Directs Cell Migration. Seminars in Cell & Developmental Biology, 20(6), 674-682. doi:10.1016/j.semcdb.2008.12.015
  11. McCaig, C. D., Rajnicek, A. M., Song, B., & Zhao, M. (2005). Controlling Cell Behavior Electrically: Current Views and Future Potential. American Physiological Society, 85, 943-978. doi:10.1152/physrev.00020.2004
  12. Blount, A. L., MD, Foster, S., MD, Rapp, D. A., MD, & Wilcox, R., MD. (2012, May/June). The Use of Bioelectric Dressings in Skin Graft Harvest Sites: A Prospective Case Series. Journal of Burn Care & Research, 33(3), 354-357. doi:10.1097/BCR.0b013e31823356e4
  13. Kloth, L. C., PT. (2005). Electrical Stimulation for Wound Healing: A Review of Evidence from In Vitro Studies, Animal Wxperiments, and Clinical Trials. The International Journal of Lower Extremity Wound, 4, 23-44. doi:10.1177/1534734605275733
  14. Percival, S. L., PhD, Hill, K. E., PhD, Williams, D. W., PhD, Hooper, S. J., PhD, Thomas, D. W., PhD, & Costerton, J. W., PhD. (2012, September 17). A Review of the Scientific Evidence for Biofilms in Wounds. Wound Repair and Regeneration, 20(5), 647-657. doi:10.1111/j.1524-475X.2012.00836.x
  15. Edmiston C.E., McBain A.J., Roberts C., & Leaper D. (2015). Clinical and Microbiological Aspects of Biofilm-Associated Surgical Site Infections. Advances in Experimental Medicine and Biology, 830, 47-67. doi: 10.1007/978-3-319-11038-7_3
References
  1. MedMarket Diligence, LLC. (2018). Billions in Global Wound Product Sales, Yet Chronic Wounds Remain a Chronic Problem, Base on New Research from MedMarket Diligence. PR.com, 1-2.
  2. Wound Reach Foundation. (2013-2019). The Challenge. When Was the Last Time You Said “Ouch!”? www.woundreach.org/why-wounds/the-challenge.
  3. Malone M, et al. (2017). The Prevalence of Biofilms in Chronic Wounds: A Systematic Review and Meta-Analysis of Published Data. J Wound Care, 20-25.
  4. Zhao M. (2009). Electrical Fields in Wound Healing - An Overriding Signal that Directs Cell Migration. Semin Cell Dev Biol, 674-682.
  5. Foulds, I. S., & Barker, A. T. (1983). Human Skin Battery Potentials and Their Possible Role in Wound Healing. British Journal of Dermatology, 109(5), 515-522. doi:10.1111/j.1365-2133.1983.tb07673.x
  6. Dubé J, et al. (2010). Restoration of the Transepithelial Potential Within Tissue- Engineered Human Skin In Vitro and During the Wound Healing Process In Vivo. Tissue Eng Part A, 3055-3063.
  7. Moulin V, et al. (2012). Electric Potential Across Epidermis and its Role During Wound Healing Can Be Studied by Using an In Vitro Reconstructed Human Skin. Adv Wound Care, 81-87.
  8. Nuccitelli, R. (2003). A Role for Endogenous Electric Fields in Wound Healing. Current Topics in Developmental Biology, 58, 1-26.
  9. Banerjee, J., Ghatak, P. D., Roy, S., Khanna, S., Hemann, C., Deng, B., . . . Sen, C. K. (2015, March 24). Silver-Zinc Redox-Coupled Electroceutical Wound Dressing Disrupts Bacterial Biofilm. PLOS ONE, 1-15. doi:10.1371/journal.pone.0119531
  10. Data on file, report #SLM090512CMC01F
  11. Kim, H., Makin, I., Skiba, J., Ho, A., Housler, G., Stojadinovic, A., & Izadjoo, M. (2014, February 3). Antibacterial Efficacy Testing of a Bioelectric Wound Dressing Against Clinical Wound Pathogens. The Open Microbiology Journal, 8, 15-21. doi:10.2174/1874285801408010015
  12. Kim, H., & Izadjoo, M. J. (2015, February). Antibiofilm Efficacy Evaluation of a Bioelectric Dressing in Mono- and Multi-Species Biofilms. Journal of Wound Care, 24(2), S10-S16. doi:10.12968/jowc.2015.24.Sup2.S10
  13. Banerjee, J., Ghatak, P. D., Roy, S., Khanna, S., Sequin, E. K., Bellman, K., . . . Sen, C. K. (2014). Improvement of Human Keratinocyte Migration by a Redox Active Bioelectric Dressing. PLOS ONE, 9(3), 1-14. doi: 10.1371/journal.pone.0089239
  14. Park, S. S., Kim, H., Makin, I. S., Skiba, J. B., & Izadjoo, M. J. (2014, January). Measurement of a Microelectric Potentials in a Bioelectrically- Active Wound Care Device in the Presence of Bacteria. Journal of Wound Care, 24(1), 23-33. doi: 10.12968/jowc.2015.24.1.23
  15. Borgens, R. B., Robinson, K. R., Vanable, J. W., & McGinnis, M. E. (Eds.). (1990). Integumentary Potentials and Wound Healing. Experimental Physiology, 75(2), 171-224. doi:10.1113/expphysiol.1998.sp004170
  16. McCaig, C. D., Rajnicek, A. M., Song, B., & Zhao, M. (2005). Controlling Cell Behavior Electrically: Current Views and Future Potential. American Physiological Society, 85, 943-978. doi:10.1152/physrev.00020.2004
  17. Blount, A.L., MD, Foster, S., MD, Rapp, D.A., MD. & Wilcox, R., MD. (2012), May/June). The Use of Bioelectric Dressings in Skin Graft Harvest Sites: A Prospective Case Series. Journal of Burn Care & Research, 33(3), 354-357. doi:10.1097/BCR.0b13e31823356e4
PATENTS:
  • PROCELLERA® Antimicrobial Wound Dressings: This product is covered by U.S. Patent Nos. 7,457,667 and 7,813,806. Other U.S. and/or foreign patents may be pending.
  • PROCELLERA® Composite Antibacterial Wound Dressings: This product is covered by U.S. Patent Nos. 7,457,667; 7,813,806; and D816,233. Other U.S. and/or foreign patents may be pending.

© 2024 Vomaris. All rights reserved. Vomaris, Vomaris logo, V.Dox, V.Dox logo, and FlexEFit are trademarks of Vomaris Innovations, Inc. Procellera, Procellera Helix, Procellera Helix Post-Op, Advanced Microcurrent Technology, Energel, and Inspired by the body. Powered by electricity. Energized by results. are all registered trademarks of Vomaris Innovations, Inc. All other trademarks are property of their respective owners.

K-152 Rev. B – Last updated: January 2024

Thank you for contacting Vomaris.
We will respond to you within 48 hours.

Skip to content